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ABSTRACT 30350

A new model for treating plasma radiation processes in plasmas is extended
to the problem of bremsstrahlung emission from electron-electron collisions.
The spectra of longitudinal and transverse waves, including dielectric effects,
are derived to lowest non-vanishing (quadrupole) order. A resonance in the
spectrum of transverse waves near w = Ewp, the first harmonic of the electron
plasma frequency, is noted. The high frequency form of the transverse spectrum
is approximately evaluated and found to be relativistically small by comparison
with the dominant electron-ion bremsstrahlung. Finite wave length corrections

to the radiation generated by electron-ion collisions are also discussed.
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I. INTRODUCTION

In a recent paper! (hereafter called Ref. 1) a model describing the
emission of radiation by a classical, fully ionized plasma was presented. This
model describes, in a simple but self-consistent fashion, plasma modifications
of the bare particle bremsstrahlung spectra by considering a) the colliding
particles giving rise to the radiation as interacting through a dynamically
shielded potential and b) the emission process as taking place in a dispersive
Plasma medium which alters the propagation characteristics of the waves.
Results obtained in the dipole approximation, to which Ref. 1 is restricted,
are in agreement with Mercier's® and Dupree's® calculations, the latter based
on a formal hierarchy expansion.

In dipole order the wavelength of the emitted radiation is considered
infinitely long compared to a characteristic dimension of its source, which
for shielded particle interactions is at most a few electron Debye lengths.
In this approximation, only electron-ion collisions produce bremsstrahlung,
for in each electron-electron encounter the radiation field of one particle
is equal in magnitude and oppositely phased to that of the second.

When the finite ratio of the emission wavelength to the source size is
taken into account, collisiéns between electrons produce a net quadrupole
radiation. 1In addition, there arise finite wavelength corrections to the
electron~-ion bremsstrahlung spectra.

We address ourselves in this paper to the electron-electron radiation
process, applying and extending the techniques developed in Ref. 1. Finite
wavelength corrections to the electron-ion spectra have also been derived and

a summary of the results of this calculation is included in Section VI.
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The ccllective dielectric aspects of the bremsstrahlung problem are of
particular ilanterest in solar physics, where resonances in the spectra of Type
TT radio bursts at the electron plasma frequency and its harmonic have been
explained® as, respectively, enhanced electron-ion dipole and electron-electron
quadrupole bremsstrahlung from strongly non-thermal plasmas. We shall see
presently that a resonance at twice the electron plasma frequency is a natural

consequence of considering electron-electron radiative interactions within the

framework of our model.




II. THE MOIEL

We consider radiation as emanating from test current sources embedded in,
interacting with, but logically distinct from an infinite, spatially homogeneous,
Vlasov plasma. Initially, the sources are considered as arbitrary current
distributions. Later, however, they will be specified as the time varying
contributions to the microscopic current arising from collisions between dis-
crete plasma particles.

For the high frequencies of interest (w > wp, the electron plasma frequency),
only the dynamic response of the electron component of the infinite Vlasov
plasma need be considered; the ions simply provide a stationary, uniform,
neutralizing background. For simplicity we consider the case where no macro-
scopic fields are present, although the existence of a steady, weak, and uniform
magnetic field leads to an interesting modification of the results®.

Embedded in the plasma, the source current, which we shall describe by
a density £§Q£,t), polarizes the medium and delivers energy to the plasma at

a rate

P(t)= _Jdasz(r,t) ..E. (E,t), (2.1)

where E(zp,t) is the self field arising from Jg, modified by the plasma.
If Eq. (1) is averaged over an arbitrarily long (compared with the duration
. s 1 . T T ;
of a typical collision /wP) interval, - /2 to + /2, the average power delivered

is Jjust

ey
P :_T-‘jdjrf ?t :;2 . E (2.2)
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When Jg and’g are expanded as Fourier integrals, Parseval's Theorem can be
m
applied ir the limit that T is taken to be infinitely long and Eq. (2.2) cast
as an equivalent double integral over the conjugate vari&bles#& and w,
{

f) = - (QTT)J’!UH T‘j A’k J dw \95 (L\:,U)) 'g_: (—L(‘,-LO)) (2.3)

T>0o
the Fcurier transform of the arbitrary function g(r,t) being defined as
+1,

i (e | "
g(ls,w)-_fgnm S‘d r-::} dt g(g)t)exp[ A(!S "I:-u)t)J .
The electric fieldlf is relaﬁéd T gs through Maxwell's equations, which

-
can be expressed in the form

(- we”)g -k pg -moe (G ). Y

The quantity gp represents the plasma current arising from polarization of the
medium by thehsourceu It is the presence of this term which introduces charac-
teristic plasma wave effects (e.g. dielectric shielding of transverse waves
and the existence of propagating longitudinal waves) into the problem. Eguation
(2.4) and an equation of continuity for the total current, plasma plus source,
are equivalent to a solution of the full Maxwell equations forj%.

For small amplitude waves, gp is proportional to_gland for a Vlasov plasma

-

is related to the linear deviation f of the electron distribution from its

steady state (in the ebsence of J ) value
[

9? = -Me fdj"?c.‘.’z (2.5)

n being the average electron number density and -e the electronic charge. The




perturbation f is determined from the linearized Vlasov Equation

f.—_ em” (E{- yxg)_Q_A (w-fox+la)_: (2.6)
- c / X

m being the electronic mass. The small damping, ie, . has been introduced in
the customary way only for mathematical convenience in determining the proper
rath for contour integration and is ultimately put to zero. If we restrict |
ourselves to isotropic media so that fo(lxl,), the magnetic interaction term
in Eq. (2.6) vanishes.

Combining Eq. (2.6) with Eq. (2.5) and substituting the result for g}’

into Eq. (2.4), we solve for g,
£- -ﬂu’w"k‘”{ [ x (xx )] ™1+ J6 £ (@-ky rie) |
-0
‘I-L(lljg} [I + U)Plk'ajvdjV K. Dg’/gv (U)'L('.‘( +4£)—.J }’ @D

and find that it splits into components longitudinal and transverse to ‘1‘{'. In -
_. 1
Eq. (2.7), Wy = (4Ine®m™ 1) /2 is the electron plasma frequency.
This value of‘§ is in turn introduced into Eq. (2.3) and an expression

for P gquadratic in the source function 2'5 obtained,

2
P- -(wsv)";;fd’kfdw ¢o (108, lﬁg , (2.8
D (k) D (kw)

It will be henceforth understood that T is an arbitrarily long interval. The

average power P will be shown to be independent of T (as it should be), so
long as T is long. Use has been made in Eq. (2.8) of the fact that since _E“(;,t)

*
is a real quantity Eu(-zc,-w) = f.", (If,w). The functions Dy, and D, whose complex



complex conjugate (¥*) values appear are the usual longitudinal and transverse

dielectric functions

D,

- - o
l*Czkau) 2 u)P:z,w lJ'dsv 1Co (u)—l:-x"l'l.ﬁ) , (2.9a)

- -1
D= l+u),,2k zfd3\/ L(&E’/av (w—[i-x_ﬂz) : (2.90)

Beeszuse of the assumed isctropy of fg, they are independent of the direction
of‘& and each possesses the property D(k,-w) = D*(k,w).

t can be readily shown that fer a given value of.§ the real part of the
integrand in Eq. (2.8) is an odd function of w and vanishes upon integration.
The imaginary part of the integrand is, on the other hand, even in w and non-
vanishing so that P is (as it must be) a real quantity. We shall consequently
multiply the right hand side of Eq. (2.8) by 2 and restrict attention to

positive w-values, interpreting the w-integrand as the power emission spectrum,

€|‘O|

(;msT) Im fd k K ]k &sl
Dr—_(k,w-) ])L(k,w) +(2.10)

Equation (2.10).is.our. fundamental.iworking equation. Resonances in the
integrand of Eq. (2.10) arising from thé near vanishing of DL and DT correspond
respectively to the emission of longitudinal and transverse waves. By .brems-
strahlung we mean Just such wave contributions to the longitudinal and transverse
emission spectra when the sources are properly specified.

Longitudinal wave propagation occurs at frequencies close to but slightly

higher than w, with corresponding wave numbers

b




2\ L -
K.~ (wl— wp) 1(5)- /"’u 5 (2.11)

u being the rms thermal velocity. For frequencies much higher than w_, the

D’
wavelengths of longitudinal oscillations become comparable to or smaller than
an electron Debye length (XD = uwél), and such waves damp by phase mixing
(Landau damping). For a thermal equilibrium plasma Dawson and Oberman® point
out that only longitudinal cscillations in the approximate frequency interval

o, <ws 1.4 wy, are appreciably undamped.

Transverse waves, on the other hand, propagate at any frequency greater

than Wy with a wave-number frequency relationship

| -
K. = (w2 ! (2.12)

Such transverse waves thus have phase velocities greater than c and hence do

not Landau damp.



TI. THE SOURCE FUNCRION AND ITS LONZ-WAVEIENGTH EXPANSION

=}

Wnii= the source current js has been arbitrary to this pcint, we ncw want
-t
v gpecify it apprepriately for the tremsstrahlung process. We first note that

cremestrghlung 1s emitied by discrete plasma particles and resuits from inher-

e among the particles coumprising the plasma medium. Fecause of the mass

\Y)
[

revic, the rowe of 1.ms as the accelerabed emitters c¢f such radiation can e

cmglected and *he space Fourier transfcrm of the source currermt taken ag

69- o3 goorbiknal, O

L ]‘

the sum being extendsd over all electrons in the volume of plasma from which

e ewission 1s 10 be computed.

A

w

ari aid to isclating the accelerative porticn of the current density,
wz T.gkea two time derivatives of Eq. (301), Fourier transform irn time’and obtain

fEW‘gﬂ (g,w) (the guantity which appears in Eq. (2.8)),

U, -0 [ (xw=ew " D [(ihmik e le- 24k Yo

An order of magnitude estimate of the terms in this equation indicates

that they are in the ratio 2 2
‘,@,ku:Ku
Tow w w¥

where the typical value of ve has been taken to be the rms velocity u cf the
~l

ciectrons. From the discussion in Section IT, we know that the phase velocities .
of hoth longitudinal and transverse waves are greater than the electron thermal

velcoity. Defining, therefore, a smallness parameter o = kuwil = kXDﬁ we discard




terms of O\O{—i@)z , retaining O‘<oz %))59> terms, since it will be evident shortl
that O(1) terms vanish identically for the electron-electron process. [For w
near wp, small terms are of O(w); for much higher frequencies they are yet
smaller.]

As we are interested in bremsstrahlung from electron-electron collisions,
the acceleration ie and its derivative Ve can be represented as a sum over the

. v W
contributions v o and Vee! from individual encounters. To O (Ol f) Eg. (3.2)
A fdd

then becomes

%Ug,w) :ew'z’ée‘ K:ﬁd —,(!Sv\:{gc( Y”e —2,45..\? \‘:/?ea cx,o@&.te*)l)(jj)

and since the sums e and e! extend over the same assemblage of particles, it

follows that

L0609 2. 2, [t -t i) oty

dwr edel =" (3.4)

+(:\Zele—,(l.$' ble Vot - 24K ¥ ‘Vee,)e)‘P("k )Jw

Now we expand

o0
» (a-¥)]”
exp (-4k-1e) = 2> exp (4Kt ),
-~ m=o m’
(3.5)
successive terms in the expansion (3.5) are of O(Oz) , since we anticipate that
shielding (when properly introduced) will limit the range of interaction Le-Ig!

to a few Debye distances. To order o, [gs(k,w) reduces to
-

Jog0) - 25, 3 4 (et v T i e 18- (feerke Ve
ot \ (3.6)
+4 “é,, :,é,e: ¥ ,2‘\;{?: }_’6’6)} exp (\—lklte”_ju).




where the relative separation vecter ree! = re - re! has been introduced.
L Lan

Had

For particles e and el irteract ting through a Coulcmb potentisl, we have

Yeer = %lreuls = - Ve, 6.1 o

o e[ (n Yool SRt (W) -
Vee!' = = TG e. (3.8)
L mv Leet

aza the (1) ferms in Eq. (3.6) are identically vanishing. (For electron-icn

COLLLELCLS

gs(g,w) has & non-zero O(1) component which leads *o the dipcle

Eremsstrahlung discussed in Ref. 1.) Substituting from the equations of motion

ard d=fining the relative velccity vezhor vee! = ve - vel, we cbtain for gs(k,w)
L »yw A -
- 3
AL ot Vel Veel 12 Vee' 12 1 Veel
‘ . ol e cel ! ee! Tee! [ee! * Yee
w)= =2 kD [E Xel | g Yool 5 BeBele %) o lukn)
5t o LM e#e’ r 3 3 s - w
Tee! ||'ée'l |’ée'|
Lo L

T 2 (.Qee Do 3 (3.9)

whers, for convenlence, we have defined

3
ey el V. ' \ "V
Qe - (—'{ ey __._‘f‘%f'#c _ 3Bk e e exP(‘A,’S'E—)e (3.10)
P Y | el Yl el
e L L

(We shall shortly relate Qee' t0 the third time' derivative of the e- e' quadrupcle tensox).

(Y1

Now Wee! as it appears in Eq (3.10) involves the exact orbits of parbicles
-

—

e ard e'. To obtain the exact orbits, the many body problem must be solved and
this ig a most difficult task. However, for a range of frequencies, extending
from u)p close up to wgp = 'ur;(')‘O, where rgoe is the impact parameter at which

the everage electron undergoes a 90° deflection, the collisions which contribute

jomizantly to the radistion emicsion are of the smgll angle variety. The orbit

- i0 -




traversed by each of the colliding particles e and € in such small angle
collisions is, to a good approximation (in the absence of external fields), the
superposition of its mean rectilinear motion and & swall rapidly fluctuating motion
produced by the sum interaction of all other particles of the medium.

This fluctuating motion would itself be a difficult quantity to evaluate.
However, we are only interested in the average power radiated. In Eq. (2.10)
for the power radiated,g;s enters quadratically. We must therefore evaluate
the average of‘Zig}g' squared. To do this we make use of the superposition
principle for dr;;sed particles as put forth by Hubbard’ and Rostoker®. According

e

to Rostoker we may employ the following mean Qeé;

oy

Qw Qeer +m fd%,j'dve [Q '] Qw.. ,C(e":e)]
tm J'I-rdgve" fd re..fd Vo Qa‘ - -F(e"le) £le"le) 4 (3.11)

for computing these averages, treatlng Qee.as uncorrelated with Qén i (in the
squared form of ) provided the pair ee' is different from the pair e,

A bar (-) in Eq. (B.ll) signifies the mean rectilinear motion of the

particle(s) is to be used, and thus ééé'is the contribution to §;e'due to the
direct interaction of e and €' as the; follow their rectilinear trajectories.
The remainder is the contribution to ééeufrom shielding, i.e. from all other
plasma electrons regarded as field particles interacting with e and e'as the
latter move along their rectilinear orbits. A derivation of the superposition
principle and a discussion of its application to the bremsstrahlung problem are
found in the work of Dawson and Nakayamas.

The quantity f(e" ) is the perturbation in the one particle electron dis-
tribution (as a function of the phase space coordinates of e") arising from the

rectilinear motion of e. To obtain f, we solve the test particle problem in

which e moves along the trajectory Ta(t) = roq + Vet through an
) ) L]

- 11 -



irfinite, uzniform Vliasov plasma consisting of mobile electrons and a smeared
cut reutralizing ion background. Only the longitudinal intearaction between

zu-chbrorn e and the plasma is retained, the transverse fields being reigtivis-
ticgllv small if the thermal erergy of the electrons is much less than their

rest energy. The value of £ so derived is

feiga- [t elisteB)] K- Ty
- - N
arm kD, CROARA % ti2)
) (3.12)

D (k,k

1 ok o Ve .) being the usual longitudinal dielectric function, Eg. (2.9b),

evaluaated for w = koVe.
Mo~

H

» the Appendix we have derived Qe in accord with Eq. (3.11) and find
Ak re fd3k’ e)<p 4k Y‘ee)

A =—3
9“ amr* k"

[Jsvw K Ktk (E KRR Be)

3\694

— - = 4 —
DK -K'T) DK KW T KA (KKB)R KT 5 s

Al subscript indicates a vectcor component perpendicular to k' and I is the

unit dyadic.




IV. QUADRUPOLE SPECTRA

Only the straight line orbits of the interacting particles e and e! enter
Eq. (3.13). When %s (}’g,w) appears quadratically, as it does in Eq. (2.10),
the interacting paﬁ:icles are now considered uncorrelated and there
occurs only a sum over e and e! rather than the ordinary four-fold sum.
Further, the term exp(- i§°?e)in Eq. (3.13) can be replaced by unity, since
in squaring 9'3 we obtain a factor exp{iﬁ:{‘ze(t‘%ze'(@)}}. (The two different
tinmes, t! an?i t, appear because the two exponentials occur in different Fourier
time transforms) , which is approximately unity in the long wavelength approxi-
mation.

To shorten the presentation while illustrating the technique, we shall
develop only the transverse electron-electron bremsstrahlung spectrum. The
longitudinal spectrum is similarly derived, and the result of this calculation

will be quoted and discussed.

Substituting the value ofg

g from Eq. (3.9) into Eq. (2.10), we obtain

daq‘ | | | Ks» A . ol ""
Fo =~ AT v % S Gl e FerGedef

where é:ele = aeel . The sums still extend over all electrons except the pairs
e = e‘? The wave contribution is extracted by integrating locally over the
resonance in the Ll'{\ irtegrand occurring near the \‘15\ value givern by Eq. (2.12)
and 1is

=T [ (w=w) )j/'?' R xK- Qe ) ||k k- ec!
" o, [k Gk G,

dJo - RTCT w3

where k = FTK is unit vector in the direction of wave propagatiorn. The integranc
-
-y

of Eq. (4.2) displays the angular distribution of the emitted transverse radlielilz.

- 13 -



Irdeed, we now recognize that(as uséd in Eq-'(thDz%e'iS thé third time
»

derivetive of the local quadrupole tensor

Qo= ~2[3R+3%)- (el +i)] 5)

A

“or Toulomb interacting particles e and el. [The first two terms reduce LG

(3.27) upon differentiation, while the terms involving ; do not contribute to
L 4

(402)] The magretic dipcole radiation which ordinarily appears at this level

iz s mulitipole expansionlo venishes, ‘since the..local magnetic dipole moment

e .
e = ~ge [ - re] "

ig time invariart when particles e and e! interact via a Coulomb force.
The total emission is obtained by integrating Eq. (4.2) over all solid

angles

dPT 1L (@sadRg ey a
Jo ~ TS T W é. 3 (Qﬁ')w:(%e')‘“’_(%“')“’( el)_u}’ (-5

where Qoe! is a scalar corresponding to Eq. (3.10) formed by replacing the

dyadic product by a scalar product. Its screened form is (cf. Eq. 3.13)

3 N I =
3 1 o= exp (A K1 K" Vee!
oo = 20 S exp ik ) jdjk' XpUL"R) K R (1.6)

a — 1 =\ ¢
k! T (K, -k %) R( K %)
Fourier transforming Egs. (3.13) and (4.6) in time, we substitute in Eq. (4.5)

and obtain

- 3/24 il
de_ - et (w:z‘wP? A J IJ‘ 3, 0 €xXp A(ﬁ'#—ﬁ)'('&' Yé‘on
e - L <2

sikVeus Vo K KV tleos T K ak)(K e
= - TR LY S
DK, KT)  BLEW)  KpKR) T, K E)

.
t
L

- 1 -




Kar ol KR+lk (2Kl w)
DSK'E) RGKE)  REKE)D KT

- ./Sl' Zec‘ L("'Yee‘
DK B)D (K BRI -K"V)R(K K %)

I(w+K'Te) Sew+K Teet), )

4

To calculate the average power per unit volume emitted over the time
interval T, we sum the uncorrelated collisions in the following manner. The
number of electrons €' with velocities in the interval a%v¢ about :re' which
will collide with a given electron e having velocity fe at an impact distance
between Bee’ and Eed + ‘f_bee' in time T is Just the number of electrons in

the angular element dp of a cylindrical shell of radius |bee!| and lengt
ay

l Vae! | T,
]

dN = m

Vee| T 40 [ hor] cbeer (Ve d*ver (1.8

In Eq. (4.8) ¢ is the angle made by b.! with some arbitrary axis in the plane
L
transverse to :/'eel (Ree' and Vee! are orthogonal vectors ).
For the total average power per unit volume, we multiply a single term
in the sum in Eq. (4.7) by the weighting factor (4.8) and the number density
n of electrons e, integrate over all impacts allowable in & small angle theory,

and average over the velocity distributions for particles e and & . Without

loss of generality the initial displacement req - Tel, Mmay be considered as
L 4

L

the impact vector for each collision. The transverse spectrum reduces upch

- 15 -




performing these operations to
23

3
L S GtV Y PSR
dw ~ sTmc®  w? (d Veyd ‘e JZO(VQ)F"(V‘")fd K

Q"_ .'l

2
KI el J k’-_l )
{ID 'Ve)‘ F ']{(k K. Vej ID K;KI‘Y?' (on2 \‘ée)(q

)mm -

Before discussing Eq. (4.9) we shall write down the parallel expression
for the emission of quadrupole longitudinal bremsstrahlung. The longltudinal
spectrum is obtained by exactly the same process Just discussed for transverse
waves: Eq. (3.9) becomes the source current for the longitudinal part of Eg.
(2.10), the wave contribubtion is excerpted by local integration over'Lgl values
rear that given by Eq. (2.11), the angular distribution of radiation is inte-

grated over, and finally collisions are summed. The emergent result,

=L 2¢ 723
dP~_ sme fjdjVeJd Vo (ve (ve)fdk o

dw /Eﬁ/ma@"ﬂu) w*

_ili‘_lﬂ___ + B , Jlwrk' \é@) (4.10)
Dk DK B IR K %)

is similar in structure to the transverse spectrum, differing by a wavelength
ratio (cu™t 5-1”‘)5 [cf. Eqs. (2.11) and (2.12)] and numerical factors. These
numerical factors arise for two reasons: first, there are two transverse
polarizations as opposed to a single longitudinal polarization, and second,
for eny given collision the Doppler shift (dué to the mean motion of the two
electrons through the plasma) for the finite wavelength radiation differs for

longitudinal and transverse waves,

- 16 -




V. COMMENTS ON THE QUADRUPOLE EMISSION

The first term in both spectra exhibits the customary logarithmic diver=
gence for large values of|5£| (small impact distances) and must be cut off at
a value l/bmin consistent with the small angle scattering approximation.
Because of the slow logarithmic nature of the divergence, it makes little
gifference whether bmin is taken as the typical 9dD deflection impact distance
(bmin"d %i—é) or the DeBroglie wavelength (bmin = ’E—u) for an average event.
From the nondivergent term, little contribution is obtained for large values
of\E:l, so that the integral may here be extended to = with but negligidle
error.

The E? integrands of Egs. (4.9) and (4.10) exhibit resonances which
correspond to the interaction of electrons through self-generated plasma
oscillations. These resonances occur in the smalllg',region,ughIle, where
Landau damping of the oscillations (i.e. ImDL) is small. In the region where
resonant effects are important, the principal contribution to the‘§' integrals
is from the non-divergent terms. The resonance will be most strongly manifest
when both IDL(k1,£}-2§)|2 and \DL(k',El.Eeg)IZ are nearly vanishing or from our
discussion in Section II when 2{" e = 15" Vet 7 *up. Using the o-functions,
we then conclude that the resonance appears in the emitted spectra at the har-
monic Ewp, because the possibility of emission at the difference frequency

®w ~ O is excluded by the shielding factor (&% -

3
wpz) / 2. Since longitudinal

waves of frequency w = Ewp are strongly Landau damped (cf. the discussion in

Section II), we expect this non-linear resonance to appear only in the trans-

verse bremsstrahlung spectrum.

- 17 -




Didmen and Dupreeé have studied the enhancement of the transverse bremsstrahlung
spectrum near w = 2wp and have found that certain electron distributions com-
posed of a tenuous energetic component coexisting with a thermal background

cuc exnikit a significant resonance. The observed resonance around w = 2Wwp

‘v the cpechtra cf Type II eoiar radio bursts has thus been explained as srising
Prom enhanced electron-electron bremsstrahlungll. The accompanying rescnance

in Type LI spectra at w, is explained as similarly enhanced electron-ion

D
bremsstrahlung and occurs dominantly in dipole order. These Tidman-Dupree
results are included in the transverse dipole spectrum of Ref. 1 and can be

extracted by local integration near w = Wp of Eq. (LJ3) of that paper.

For thermal equilibrium

.1—3/.'2 VJ’ 2
£, (%)= (o) “exp - ¥ /ay 5.0

and the transverse and longitudinal spectra become

N a6 3k
?TP— iérzrf(:nc (u) Z Xo)k'—sydv«exp (K'Q“Va

EY n
(7 * B v“)

(5.2)
and
)3 +o° | 2
dpt 32 me” S ‘”P fd Jdv ,2+v)
dw ™ 15T mi(3 mshu) W ¥ ep (L”‘
2K® 2
2 g e
(5.3)

- 18 -




where, following the notation of Eq. (2.9b),
t W I 4 ! ]
D-- D,_['F-q:“’(‘z-“") ' (5.4)

The integration variables in Egs. (5.2) and (5.3) have been non-dimensionalized,

so that the logarithmically divergent term must now be cut off at a value

1

1 PR

max wb_ .,
min

For steady state thermal equilibrium conditions, the emissions of both
transverse and longitudinal electron-electron bremsstrahlung are related to
their ebsorption via collision processes through Kirchhoff's Law. Electron-
electron collisional damping may be thought of as a viscous effect, since it
is only present when the finite wavelength of the spectral components is taken
into consideration so that a macroscopic shearing -of the-electrons BRI
(regarded as a fluid)is effected. Alternatively, it may be looked upon as a
finite wave resistance due to electron-electron collision processes.

This latter approach has been taken by DuBois and Gilinskyle, who have
calculated the dissipative conductivity component which results from thermal
equilibrium electron-electron collisions. The conductivity components for
transverse and longitudinal waves which we calculate from Eqs. (5.2) and (5.3)
(The calculation is the same as that carried out in Ref. 1 for steady state
electron-ion dipole processes.) are in exact agreement with those of DuBois
and Gilinsky (including the logarithmic term).

Figure 1 is a graph of the integral
+00

* VY. R
7 j * TSJ 4 e~V e /

1
comnon to Egs. (5.2) and (5.3) and normalized to its D, - 1 value of 2(I)

- 19 -



ecausa the logarithmically divergent terms in Egs. (5.2) and (5.3) are weighted
toward large kl, where the DL'S are close to unity, this integral displays the
primgry effect of shielding for thermal equilibrium electron-electron events.

As might be expected, shielding becomes decreasingly important as w
progresses higher above Wp . This decrease results from the fact that collisions
at impact distances comparable with a Debye length (where screening is most
effective) take place tco slowly.to contribute to the radiation at high
frequencies. High frequency spectral components are emitted in closer impact
collisions which are essentially two body in nature. A small but perceptible
inflection is noted in Fig. 1 near w = 2wp. This is the aforementioned collec-
tive resonance, which for thermal equilibrium conditions adds but a minute
countribution to the overall emission because of the low level of longitudinal,
Cerenkov type oscillations in such plasmas?. A curve similar to Fig. (1) has
been obtained by DuBois and Gilinsky'? (cf. Fig. 3 of their paper).

For frequencies w 2 3wp, Eq. (4.9) can be approximately evaluated by
ignoring shielding effects, i.e. by replacing (w® - wp2)3/2 by wsand letting
D. - 1,

L

dpT wmc “' f = F K> ]
dw ~ o dk' —5 FTe) F{iL + )[ ‘“’“’J (5.5)

In Eq. (5.5) the F's are one dimensional electron distributions, and use has

been made of the fact that for isotropic distributions
2 * 2 2
jd VQJ_ VCJ_ )(;=-?U F’ . (5.6)

Further evaluation of (5.5) depends on the explicit form of F. For purposes

of a rough estimate, however, we assume that distributions of interest can be
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approximated by

F@)- o5 IVel<.u,
= 0 ctherwise , (5.8)
Equation (5.5) then becomes
aP™ 1 m’e‘ 2u |0
= n 5.(1 2lm — + —
dw ~ Ismic Wby 3 /° (5.7)

For frequencies at which the theory is valid, w < <lwge®, the first term
in Eq. (5.7) dominates. (Toward the high frequency end, the '©/3 may add a
factor of ~ 2 to our estimate.) Comparing this logarithmically dominant por-
tion of (5.7) with the.high frequency form of the transverse dipole spectrum

as derived from Eq. (4.13) of Ref. 1, we find that the ratio, quadrupole to

PY . 2

pE 52 &

dipole,

(Z is the ionic charge), is small even for rather energetic electron distribu-
tions. We conclude, therefore, that except for those electron distributions

vwhich lead to a considerable enhancement of the bremsstrahlung in the neighbor-
hood of w = 2wy via strong collective effects, radiation loss due to electron-

electron collisions is negligibly small in the frequency interval considered.
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VI. CONCLUDING REMARKS

Refore summarizing, we would discuss briefly two points: k2 bremsstrahlung
correchions from electron~-ion collisicns and the role of relativistic kinematics
ir. the higher order bremsstrahlung emission.

Eiectr n-Ton k° Corrections

A treatment very similar to that presented in the preceding sections has
beer carried cut to assess the effects of electron-ion collisions on higher
order longitudinal and transverse bremsstrahlung spectra. In this problem it
is impcrtant to carry the electron-ion source current to octupole order, for
ir. Eq. (2.19)) there exists a finite coupling between the dipole and octupole
current densities. This dipcle-octupole coupling leads to an emission compar-
ahie with that obtained from the squared form of the quadrupole £S° [for
isctroplc Ty, the dipcle-quadrupole interaction vanishes because of the
argular symmetry in the integrand of Eq. (2.10%. The calculatior has been
carried out assuming uncorrelated ions and for an electron-ion Coulomb inter-
action force. The superpcsition principle has also been used to properly
account for orbit fluctuations important in distant encounters.

As in the dipole case, a resonance near w = wp is found. This resonance
arises from a non-linear coupling between the electron plasma oscillation (u)?srnp)
ard the ion wave (w = 0) associatéd with each of the interacting particles.

In thermal equilibrium, the ¥ electron-ion bremsstrahlung corrections
car be compared (via Kirchhoff's Law) with the finite wavelength conductivity
corrections calculated by Berki3 for electron-ion collisions. To logarithmically
dominant order our emission results lead in this case to expressions for the
dissipative conductivity components which agree with Berk's calculations for

both transverse and longitudinal waves.
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For high frequencies the ¥® correttion is small compared with the dipole

emission in the approximate ratio

&4 out

Relativistic Particle Dynamics

We have seen in Egs. (5.8) and (6.1) that the transverse spectrum arising
from electron-electron collisior8 and the finite wavelength correction to the
electron-ion emission are both relativistically small in comparison with the
electron-ion dipole emission. The question now arises as to whether inclusion
of relativistic effects in the particle equations of motion (i.e. replacing
Egs. (3.7) and (3.8) and the corresponding electron-ion forms by their relstiv-
istic generalizations, including the full electromagnetic interaction between
particles) generates corrections in dipole order of the same magnitude as
those we have calculated.

We argue that relativistic dipole corrections to the electron-electron
transverse spectrum will be of C)(EéZ) and hence generally smaller than those
which we have considered. This follows from the fact that the dipole power
emission is proportional to Lg(w)lz (see Ref. 1), where P is the local dipole
moment for each interaction. To lowest non-vanishing order ? ~'%; and hence
the dipole power is of O L%‘})

For electron-ion encounters, however, we do expect corrections to the dipole
spectrum of‘()<3§;>. This follows from the fact that %ﬁw) now has an O(1)
contribution, so that Ig(w) |* can have an O G:—i) term”forithisitype interaction.
Relativistic consideration of the problem. will lead 'to dipdle electron-ion
eéorrections comparabierwithﬁthose‘givén by Eq. (6.1). This problem is worthy
of pursuit and can perhaps be solved by a modification of the method used in
this: paper. -
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SUMMARY
Extending the model developed in Ref. 1 to include sources due to the

lowest order form of the accelerative current density arising from electron-

electron interactions, we have succeeded in obtaining expressions for the
iongitudinal and transverse quadrupcle bremsstrahlung spectra. Shielding of
the electrons and the accelerations Of the shielding clouds are included, so
that the low frequency forms of the spectra are properly modified. Simiiar
methods can be applied to obtain finite wavelength corrections to the electron-
ion emission.

The principal features of the spectra thus obtained are:

1.) The transverse electron-electron spectrum exhibits a rescnance near
w = pro The resonant emission is small in thermal equilibrium but can
be considerably enhanced for non-equilibrium situations, as pointed out
by Tidman and Dupree®.

2.) The thermal equilibrium forms of the spectra lead upon application of
Kirchhoff's Law to conductivity values identical with those derived by
DuBois and Gilinskyl<®.

3.) The high frequency form of the transverse spectrum is approximately evaluated
and found to be relativistically small compared with the dominant electron-
ion dipole emission.

L.) Finite wavelength corrections to the bremsstrahlung spectra for Coulomb
electron-ion interactions are quoted. These spectra exhibit a resonance
near w ~ Wp. For thermal equilibrium plasmas, the power emissions are
identically related to Berk's!® conductivity corrections. At high fre-
quencies, where explicit evaluation is Possible, the transverse emission

is again relativistically small compared with the dominant dipole power.
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Appendix

In this appendix 'Q:eel is calculated according to the prescription of

-

Eg. (3.11). From the form of Qéel , Bq. (3.10), we note that only the terms

o~
@ -3 . - .
:‘ee" ‘Lee"]l;ge'l exp{-ll:'::?} and f.ee' f-ee (ree' v lli-:-e'l exp{-l‘lg-}‘_e} need
S

be worked out, since vget ree‘lree'*l exp{-lk-re} may then be obtained by
'~ oy v ad v

transposing the first dyadic.

Using Eq. (3.12) for f, we write

'«iiv"f? exp(-ikle) —‘%;—ﬁ; QXP(“E'E)"%;;J&X fds”’ Yd_jk’

{ (- (W- %) exp{-a[k-x - K" (B} &

-BP DOGKE) K (T v
HE-2NE-) op{-[KE -£-Rl} &' by

IB-xP KD (KK R) K (B-w)+iE
+££_Jd3 [ fd&wfd-" (k'
{(X - expf 2K (- B)-K (- B)))

K=xF KAKUR(KK ) B (kKB
t of n, ok (A.1)
K-%hy K%y
(T W)ris K- @-w)his)-
Now in Eq. (A.l) exp (-i&-x) may everywhere be replaced by exp (-ik-'x';?), since

- L.

the interaction range i"fe is cut off by shielding at distances of the order
of a few Debye lengths and the corrections [i}z-(fe-‘).()]n (nd)"" dre thus small in
@. (Recall that .k. represents the wavenumber of the emitted radiation.)

The velocity integrals in (A.1l) can be carried out by noting that for

isotropic f,
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fdw K'. a’t/;:w kw

= -1 .2
w — I< W+Aa ] (8-2)
where from Eq. (2.9b)
I 2
K !
fdsv‘/ m /9\.4./ _K [D,_(k':“’)"} . (A.3)
w- I< WH& u)P‘“

Vee! Veo!

T explak-) - x4 B)| *—7";\?6' T ek fa
iZ-E‘ <.'S'.L<. ‘Vc'> exp[4 K" (x- re)] -

(k K" z))

-TlP\ k7 v
F-X
+——_))sz( K,a )qP[xkl (x- rcl)](l_ lk’,’f Vl))
|
e (268 e0B)

op{ifk" (x-B) +£" (5]

( , ’
| = = - ——
[ | § o u .
DK T) N UKL T (-4
The space integrations are in the form of the Fourier transformed Coulomb

electric field

oI Ll K Ul
J‘d?( X - a|3 f’XF{llﬁ X k"" €XF{AI§'£}. (a.5)

When use of (A.5) is made, Eq. (A.4) is easily reducible to a single integration
over interaction,wavenumberszgl Further, significant cancellation is induced

-3
by expressing Tgel Vee'ﬁée'] in integral form,
- ) -~
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Vet Vee! 2 17 L )
TFGGE .I.I: = -mi_zg‘dskl !S ,‘./fe‘ QxF{L!s"Eel} . (A.o)

In simplest form, we then finally write

_sccvegt Lexp(AK Y‘eJ' 3,1 €X (xk rec)
T opbtn)- o L LS
[k Y&-L l%.l. I< k‘ Vee
D% LK) k3D (G B)REA B, D

where the . subscript designates a vector component perpendicular to '}‘{" .
-5
The format for determining r__ I Toot T 1+ VaetTel ex {-ik-re is quite
g .ee hee ~ee ~ee I.% ' P Mo o } ql
similar. We write down an equation corresponding to (A.1l), carry out the
velocity integrals using (A.2) and (A.3), and note that exp(-ils-.}s) can be set
equal to exp(-ilé-'r;e) and extracted from the integration process. Corresponding

to (A.%4), we then obtain

T *
X~ B x-B) /KT | J , ))
= - k' (x-Te) (1-

{ ,5_@45 KIZ xﬂ' eXF Au ()45 “‘e) (, L(k!7 Kl Ve
AEREUEY) ( KEE) el 5] (- }
[R-x I (% k' el (B L(Ki‘.s"?@'))

b gy foref o e Lo edlleo) (kiR p'w)

(l]r) I _ lls K,J— Kua.




The space integrals are now in a form slightly different from (A.5). It

can be shown, however, that for arbitrarya a.ndg

jds ( )(K 0)(X Q) XP(“‘S"ZS)=

[x-aP

A ] - K' ! I

S op (K -a) (I K-b+KbtbK| (a9
Equation A.9 is perhaps best evidenced by changing variables to y = X- &

expressing '3'11311 as - & a/ax %}-;]-5, integrating by parts, and finally using
(A.5) and its 'k.' gradient.
For the purpose of combining terms, it is again convenient to express

(in analogy with the inversion of Eg. (A.9))

.Fécl—r-‘ecl Féel 'zel ' J‘ A
Bl Bl i (o eplk'E)
A

[
[Q_' °1k‘s)K Voe! + K’ e'+Ve‘K]

(A.10)

The result obtained after integrating and algebraically simplifying Eq. (A.8)

is
L Y; F- |
becl‘l'e‘.eli P E)(P(“E Y\) LQXE(IK ré)s‘ 31 E(,{k rée)
lee! -
v v ! - —_ _
[ﬁﬁi*Ysh—E _ 5‘\1;; +ek I K\ (a.11)

I _kl I kv
IL(K, K% DK T)  D(kiKB)RKE B
and the transpose of the latter dyadic form, it is
now possible to write down Eée' (cf. Eq. 3.10), properly shielded in accordance

~

with the superposition principle,
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expl-ik- ,%)Jd ¢ exp(LE Bet)

..Lgl K Ve.z.‘l'\(:..\.k' (Ikl-? ‘H<l l)k Vee'
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Figures

Numerical evaluation of J as a function of w in the low frequency

region.
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